Microtubule-severing activity of the AAA+ ATPase Katanin is essential for female meiotic spindle assembly.
نویسندگان
چکیده
In most animals, female meiotic spindles are assembled in the absence of centrosomes. How microtubules (MTs) are organized into acentrosomal meiotic spindles is poorly understood. In Caenorhabditis elegans, assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin. However, the role of MEI-2 is not known and whether MT severing is required for meiotic spindle assembly is unclear. Here, we show that the essential role of MEI-2 is to confer MT binding to Katanin, which in turn stimulates the ATPase activity of MEI-1, leading to MT severing. To test directly the contribution of MT severing to meiotic spindle assembly, we engineered Katanin variants that retained MT binding and MT bundling activities but that were inactive for MT severing. In vivo analysis of these variants showed disorganized microtubules that lacked focused spindle poles reminiscent of the Katanin loss-of-function phenotype, demonstrating that the MT-severing activity is essential for meiotic spindle assembly in C. elegans Overall, our results reveal the essential role of MEI-2 and provide the first direct evidence supporting an essential role of MT severing in meiotic spindle assembly in C. elegans.
منابع مشابه
Correction for The spindle assembly function of Caenorhabditis elegans katanin does not require microtubule-severing activity
Katanin is a heterodimeric microtubule-severing protein that is conserved among eukaryotes. Loss-of-function mutations in the Caenorhabditis elegans katanin catalytic subunit, MEI-1, cause specific defects in female meiotic spindles. To determine the relationship between katanin's microtubule-severing activity and its role in meiotic spindle formation, we analyzed the MEI-1(A338S) mutant. Unlik...
متن کاملAn Essential Role for Katanin p80 and Microtubule Severing in Male Gamete Production
Katanin is an evolutionarily conserved microtubule-severing complex implicated in multiple aspects of microtubule dynamics. Katanin consists of a p60 severing enzyme and a p80 regulatory subunit. The p80 subunit is thought to regulate complex targeting and severing activity, but its precise role remains elusive. In lower-order species, the katanin complex has been shown to modulate mitotic and ...
متن کاملKatanin controls mitotic and meiotic spindle length
Accurate control of spindle length is a conserved feature of eukaryotic cell division. Lengthening of mitotic spindles contributes to chromosome segregation and cytokinesis during mitosis in animals and fungi. In contrast, spindle shortening may contribute to conservation of egg cytoplasm during female meiosis. Katanin is a microtubule-severing enzyme that is concentrated at mitotic and meiotic...
متن کاملKatanin maintains meiotic metaphase chromosome alignment and spindle structure in vivo and has multiple effects on microtubules in vitro
Assembly of Caenorhabditis elegans female meiotic spindles requires both MEI-1 and MEI-2 subunits of the microtubule-severing ATPase katanin. Strong loss-of-function mutants assemble apolar intersecting microtubule arrays, whereas weaker mutants assemble bipolar meiotic spindles that are longer than wild type. To determine whether katanin is also required for spindle maintenance, we monitored m...
متن کاملKatanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis
Katanin is a heterodimer that exhibits ATP-dependent microtubule-severing activity in vitro. In Xenopus egg extracts, katanin activity correlates with the addition of cyclin B/cdc2, suggesting a role for microtubule severing in the disassembly of long interphase microtubules as the cell prepares for mitosis. However, studies from plant cells, cultured neurons, and nematode embryos suggest that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 143 19 شماره
صفحات -
تاریخ انتشار 2016